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SYNOPSIS 

Several suspension equations available in the literature have been found to have a common 
derivative form. This common derivative was found to be equivalent to a ratio of the 
intrinsic viscosity, [ q ]  , and a quantity, VInt, defined as the "relative suspension interaction 
volume" available for particle flow. V,,, was, in general, found to be a relatively simple 
function of the suspension particle volume fraction, cp, the maximum particle packing frac- 
tion, cpn, and a new variable, 6, defined as the particle interaction coefficient. Different 
forms of this common derivative were obtained by modifying VJnt with a simple adjustment 
for the value for the interaction coefficient, u. Integration of this generalized derivative 
yielded a generalized suspension viscosity equation that was found to predict the form of 
many suspension equations that have previously appeared in the literature. For example, 
by varying the interaction coefficient, u, the Arrhenius equation resulted when u = 0, the 
Kreiger-Dougherty equation resulted when u = 1, and when u = 2, the Mooney equation 
resulted. Fractional values for the particle interaction coefficient were also found to be 
useful when optimizing the empirical fit of the literature data of Vand and Eiler. Additional 
insight from such a data fit can also be obtained from the magnitude of both the particle 
interaction coefficient, u, and the packing fraction, c p n .  0 1993 John Wiley & Sons, Inc. 

I NTRO DUCT10 N 

The prediction of solution viscosities with suspended 
particles crosses many applications. The prediction 
of spherical particle suspension viscosities was rec- 
ognized as an early need in the development of la- 
texes to make synthetic Paint and coatings 
latex development 576 has also found a need for this 
technology. Other diverse suspensions that have 
utilized this technology have included the food in- 
dustry to evaluate milk7 as well as the coal industry 
to evaluate bitumen emulsions.' More recently, this 
technology has also been applied to filled thermo- 
plastics?-" However, the new emerging thermo- 
plastic particulate-filled thermoset resins of the type 
recently described by Recker et al." would probably 
be described as one of the types of materials cur- 
rently most in need of a better understanding of the 
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relationship between particle-size distribution and 
viscosity. 

Several recent reviews 11~13-16 have addressed the 
current understanding of particle size and particle- 
size distribution on the rheology of suspensions. 
Many theoretical efforts have been attempted to de- 
velop equations to predict the relationship between 
the suspension viscosity, q, and the volume fraction 
of particles, p, in the suspension. An extensive sur- 
vey of the viscosity-concentration literature was 
made by Rutgers in 1962.17*1' He identified 96 equa- 
tions from the literature that described the behavior 
of these viscosity-concentration systems. Compar- 
ing the experimental data with the equations, he 
concluded that these 96 equations could be reduced 
to five useful ones. From an evaluation of their de- 
rivative properties, it has been found that these im- 
portant equations can be combined into a single 
generalized viscosity-concentration equation for 
most applications. This generalized viscosity-con- 
centration equation will be developed in this paper. 
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VISCOSITY EQUATION DEVELOPMENT 

Early in this century, Einstein 1920 showed that single 
isolated particles increased the viscosity of a liquid 
as a simple function of their volume fraction, p, ac- 
cording to the formula 

where q = suspension viscosity and qo = viscosity 
of suspending medium. The derivative of eq. (1) 
gives 

More concentrated solutions can be tackled by in- 
troducing an averaging of the influence of neigh- 
boring particles or alternately to simulate the situ- 
ation using computer modeling. The averaging 
technique used by Ball and Richmond*l started from 
an assumption that the effect of all particles in a 
concentrated suspension is the sum of the effects of 
particles added sequentially. Using this assumption, 
Ball and Richmond pointed out that the Einstein 
equation can be written in differential form as 

where dq is the increment of viscosity on the ad- 
dition of a small increment of phase volume d p  to 
a suspension of viscosity q. It is interesting that the 
form of this equation was first described by 
Arrhenius 22,23 without the significance identified by 
Ball and Richmond. The viscosity of the final sus- 
pension is then obtained by integrating the phase 
volume between 0 and p to give 

Ball and Richmond also pointed out that the major 
limitation of eqs. (3) and ( 4 )  is that they omit vis- 
cosity effects resulting from the interactions between 
spheres due to their finite size. This means that when 
a particle is added to a relatively concentrated sus- 
pension it requires more space than does its volume 
d p  due to packing difficulties. When the volume 
fraction is increased by an amount d p ,  the spheres 
that were already present suffer a crowding effect. 
This crowding causes a reduction in the available 
volume that can effect a change in viscosity by an 
amount proportional to ( 1 - k p )  , where k accounts 
for the so-called crowding factor. Consequently, dp 
is replaced with dp/ (  1 - k p )  to give 

At this point, consider two of the more widely used 
equations to describe the viscosity of suspensions 
as a function of concentration. First, consider the 
Kreiger-Dougherty equation : 

The derivative of this equation gives 

Note that this equation is the same as eq. (5) .  Like- 
wise, the Mooneyl equation given as 

has the following derivative: 

d a  - = ( 5 / 2 ) ( 1  - kp) - 'dp  
9 

The derivatives of the Einstein eq. (3 ) ,  the Kreiger- 
Dougherty eq. ( 7) ,  and the Mooney eq. (9)  can all 
be written in the following general form: 

Equation ( 10) can also be rewritten in the following 
form: 

All the derivatives previously described can be ob- 
tained from eq. ( 10). The Arrhenius equation results 
when u = 0, the Kreiger-Dougherty equation results 
when u = 1, and the Mooney equation results when 
u = 2. 

At this point, a review of the earlier argument of 
Ball and Richmond of the crowding factor, k ,  should 
be considered when comparing eq. (5) and ( 10a). 
Based on this comparison, it would be expected that 
the available unhindered volume that can effect a 
change in suspension viscosity would be expected to 
be reduced by an amount proportional to (1 - kp)" 
when suspension particles begin to interact. If this 
quantity can be defined as the "relative suspension 
interaction volume,'' VInt, then 
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This relative suspension viscosity volume can be vi- 
sualized more effectively if it is noted that (1 - k(o) 
= 0 when (o = 1 / k .  If (on is defined as the maximum 
packing fraction for a given particle-size distribution 
such that (on = 1/k, then eq. (11) can be rewritten 
to give 

The “total relative unpacked volume,” Vunpacked, can 
be defined as 

Vunpacked - - (7) (on - cp 

Based on this definition, the relative suspension in- 
teraction volume fraction would appear to be related 
to the influence of particles and solvent on the rel- 
ative unpacked volume fraction. 

Further illustration of the “relative suspension 
interaction volume,” VInt, as a function of both (o 

and u is indicated in Figure 1 for an example where 
(on = 0.75. The results in Figure 1 indicate the “rel- 
ative suspension interaction volume,” VInt, decreases 
with (o at a faster rate as u increases. For the case 
where u = 0, then VInt = 1 for all (o and the “relative 
suspension interaction volume” does ro t  change 
with an increase in particle volume fraction, cp. For 
this special case, particles have a negligible inter- 
action with each other as if they were essentially 
isolated from each other. However, as u increases, 
VInt decreases with (o, indicative of a higher concen- 
tration, a higher particle interaction, or a greater 

o=o 

Q) 

0.1 - 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Volume Fraction Particles, 0 
Figure 1 
as a function of the particle interaction coefficient, u. 

Relative suspension interaction volume, Vl,, vs. volume fraction particles, 6, 
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interference of particles with each other. This sug- 
gests that u can be described as a “particle inter- 
action coefficient” since it is apparently a measure 
of particle interaction. 

An increase in u can also be described in terms 
of an increase in all directions of a projected “radius 
of influence” around each particle. This radius of 
influence per particle could probably be better re- 
lated to a projected volume increase around each 
particle as indicated by a new effective size or 
“sphere of influence.” As the sphere of influence for 
each particle increases, then the “relative suspension 
interaction volume,” VInt between particles would 
be expected to decrease. A decrease in the unhin- 
dered volume between particles would then be ex- 
pected to result in an increase in suspension vis- 
cosity. For example, electrically charged particles 
would be expected to significantly affect u. 

It is probable that the relative suspension inter- 
action volume is, in fact, a product of several con- 

. . . . I . . . .  I . . . . , . . . . I . . . . I . . . .  

dlnrl = (5/2)(1- k0)-o d 0  

1 0”=T =.75 

tributions to the interaction process of both particle 
and solvent. For this case, 

Such that 

u = u s + u 1 + u p +  + un-l + U, (15)  

and 

where u = particle interaction coefficient; us = sol- 
vent contribution to the particle interaction coeffi- 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 

Volume Fraction Particles, 0 
Suspension viscosity derivative d In q/d@ vs. volume fraction particles, 4, as Figure 2 

a function of the particle interaction coefficient. u. 
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Table I Generalized Suspension Viscosity Equation for Selected Values of the Particle 
Interaction Coefficient, u 

Particle 
Interaction 

Coefficient, u 
Simplified Form of Generalized 

Equation 
Previous Reference for 
Equation Derivation 

0 

0.5 

4 

A r r h e n i u ~ ~ ~ . ~ ~  (1887, 1917) 

Krieger-Dougherty4 (1959) 

Mooney' (1951) 

cient; ui = ith particle contribution to the particle 
interaction coefficient; and up = summation of all 
of the individual particle contributions to the par- 
ticle interaction coefficient. 

For this definition of the particle interaction coef- 
ficient, the interaction of each particle influences 
the relative unpacked volume. The interactive vol- 
ume fraction or the remaining fraction of free vol- 

ume between particles is then elucidated from the 
product of particle influences on the unpacked vol- 
ume fraction. The solvent would also be expected 
to have a similar contribution on the unpacked vol- 
ume fraction. 

One formulation of the individual particle con- 
tributions to the overall particle interaction coeffi- 
cient could be described -as 

Table I1 Vand's Observed Data Compared with Results Calculated Using the Generalized Suspension 
Viscosity Equation 

Vand's Observed Vand's Observed 
Concentration with Stirring Calculated with without Stirring Calculated without 

by Volume (r1/90) Stirring (s /s0)  ( 1 h O )  Stirring ( d v d  

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

1.000 
1.145 
1.342 
1.621 
2.024 
2.632 
3.636 
5.556 
11.770 
33.330 
200.000 

1.000 
1.144 
1.338 
1.612 
2.018 
2.665 
3.798 
6.082 
11.793 
32.610 
200.267 

Intrinsic viscosity, [ 71 (Einstein value assumed) 2.500 
Particle interaction coefficient 1.700 
Maximum packing fraction 0.602 
Minimum average absolute % error 1.713 

1.000 
1.145 
1.342 
1.621 
2.024 
2.632 
3.636 
5.556 
10.530 
18.180 
33.330 

1.000 
1.144 
1.340 
1.613 
2.013 
2.627 
3.636 
5.435 
9.015 
17.264 
40.557 

2.500 
2.900 
0.982 
4.063 
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Table I11 Eiler’s Observed Data Compared With 
Results Calculated Using the Generalized 
Suspension Viscosity Equation 

Concentration Eiler’s Observed Calculated 
by volume ( d 1 0 )  ( d r l 0 )  

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.65 
0.70 

1.000 
1.250 
1.840 
2.550 
4.000 
7.600 

18.000 
34.000 
90.000 

Intrinsic viscosity, [ q ]  (Einstein value 

Particle interaction coefficient 
Maximum packing fraction 
Minimum average absolute % error 

assumed) 

1.000 
1.307 
1.783 
2.581 
4.078 
7.430 

17.784 
34.010 
90.689 

2.500 
1.000 
0.776 
1.158 

where upc = particle contribution constant assumed 
to be identical for all particles in a suspension; Ni 
= number of particles with the ith size diameter; 
and Bi = diameter of ith particle size. 

For this characterization, the individual contri- 
bution to the overall particle interaction coefficient 
is assumed to be directly proportional to the number 
of particles of a given size, Ni ,  and inversely pro- 
portional to the product sum of the numbers of par- 
ticles and their respective diameters. Further sim- 
plification can be obtained by noting that 

(18) 

\ i= l  

lo00 

A Eiler’sData 

0 Vand’s Data (Stirred) 

B 
‘8 
F 
u 
v1 

Q) 
b 
CD 
.I 
0 

I 

I3 10 

1 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9 

Concentration, 0 
Figure 3 
suspension equation calculations 

Measured relative viscosity data of Vand and Eiler compared with generalized 
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which yields a particle interaction coefficient of 

Note that the D1 particle-size average, often called 
the number-average particle-size diameter, generally 
gives greater weight to smaller particles than to 
larger particles. This means that the particle inter- 
action coefficient would be expected to increase as 
the number of smaller particles in the suspension 
mixture increases. Further discussion of the rela- 
tionship between particle-size distribution and the 
particle interaction coefficient will be described in 
a later paper." 

The calculation of Vlnt utilizes the maximum 
packing fraction, p,,, which is expected to depend 
on both the number of different classes of particle 
diameters, n, and the polydispersity of the particle- 

@ 
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C 
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C 
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size distribution. Several attempts have been made 
in the l i t e r a t ~ r e ~ ~ - ' ~  to predict the correct value for 
p,, based on particle-size distribution. A new analysis 
approach that generates unique insight into the cal- 
culation of p,, has been described by this author.27 
This paper shows that the packing fraction, p,,, can 
be defined as a function of the following particle- 
size distribution variables: 

where p,,, = monodisperse loose random packing 
fraction; n = number of classes of particles with dif- 
ferent particle diameters; and D 5 / D 1  = ratio of spe- 
cific average particle diameters. Since particle-size 
distribution is not of primary concern here; addi- 
tional detailed considerations of particle-size dis- 
tribution will not be addressed further in this paper. 

A generalized solution suspension viscosity for 

1.5 2.0 2.5 

Particle Interaction Coefficient, o 

3.0 

Figure 4 
data. 

Minimum absolute percent error vs. particle interaction coefficient for Vand's 
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all u 2 0 can then be obtained by integrating eq. 
(10) to give 

When u = 1, then eq. (21) integrates to give the 
Kreiger-Dougherty equation. However, when u # 1, 
then eq. (21) integrates to give 

Again, the Arrhenius equation results from eq. (22) 
when u = 0 and the Mooney equation results when 
u = 2. 

It is interesting that the class of suspension vis- 
cosity relationships described by derivative eq. ( 10a) 

used as the basis for the integral in eq. (21) yields 
a common limit: 

d In q 
a s p  + 0, then - + 5/2 for all u 2 0 

d v  

This later limit is illustrated graphically in Figure 
2 where $,, = l/k = 0.75. It is also important to note 
in Figure 2 that a decrease in the relative suspension 
interaction volume, VInt, in Figure 1 is translated 
into a significant increase in the slope of the viscosity 
curve as the solution volume fraction of particles, 
p, increases from 0 toward the maximum packing 
fraction, pn. 

Occasionally, the Einstein limiting slope of 5/2 
is not obtained as p + 0. For these cases, this lim- 
iting slope is referrbd to as the intrinsic viscosity, 
[ a ] .  For this case, eq. ( 10a) yields the following re- 
sult: 

15 - 

10 - 

5 -  

o f  I 1 I I I I I 

0.2 0.4 0.6 0 :8  1 .o 1.2 1.4 

Particle Interaction Coefficient, o 
Figure 5 
data. 

Minimum percent absolute error vs. particle interaction coefficient for Eiler's 
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ascp+O then for all u 2 0 

It is apparent that this same intrinsic viscosity, [ q] , 
would be applicable to all equations described by eq. 
(10) including the Arrhenius, the Mooney, and the 
Kreiger-Dougherty equations. In addition, eq. ( 22) 
would also be rewritten for the more general case as 

f o r u #  1 (23) 

where k = l/cpn; q = suspension viscosity; qo = vis- 
cosity of suspending medium; [ q ]  = intrinsic vis- 
cosity; CT = particle interaction coefficient; k 
= “crowding factor”; (o = suspension particle volume 
fraction; and cpn = particle packing fraction. For the 

case where u = 1, the general form of the Kreiger- 
Dougherty eq. (6)  would also be written using the 
intrinsic viscosity, [ q] , to replace the Einstein 5/2 
term. 

Some optional forms for this generalized suspen- 
sion viscosity equation for several values of the par- 
ticle interaction coefficient, u, are summarized in 
Table I. Also included in Table I are the authors 
who first referenced some of these specific forms. 
Note that fractional values of the particle interaction 
coefficient, u, are perfectly acceptable in the viscosity 
formulation methodology presented in this paper. 

Series Expansion of the Generalized Equation 

Further insight into the characteristics of the in- 
teraction parameter, u, and the packing fraction, (on, 
can be obtained from the series expansion of the 

6 
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.I x 

1 .o 1.5 2.0 2.5 

Particle Interaction Coefficient, 0 

3.0 

Figure 6 
data. 

Maximum packing fraction, @n, vs. particle interaction coefficient for Vand’s 
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generalized suspension equation. Using a MacLaurin 
series expansion for Eq. (23)  gives 

It is apparent that the first two terms are the 
Einstein limiting terms for all possible values for 
the particle interaction coefficient, u, and the pack- 
ing fraction, q,,. It has also been found that a and 
(on always occur as a paired ratio for second-order 
and higher expansion terms. If u increases, it is easy 
to see that the viscosity, 7 ,  will increase. Likewise, 

if the packing fraction, (on, increases, then the vis- 
cosity will decrease for the same particle interaction 
u. Since these two parameters are paired in second- 
order and higher terms, if a = 0.0, then the packing 
fraction does not enter into the viscosity calculation. 
This again suggests that when the particle inter- 
action coefficient is zero the particle packing is not 
important and the particles have minimum inter- 
ference with each other. In later papers,27s28 it will 
be shown that both the particle interaction coeffi- 
cient, a, and the packing fraction, (on,  can be a func- 
tion of both the number of different classes of par- 
ticle diameters, n,  and the particle-size distribution. 

Evaluation of literature Data Using Generalized 
Equation 

To illustrate the application of the generalized sus- 
pension equation, a procedure was developed to ob- 

Particle Interaction Coefficient, IS 

Figure 7 
data. 

Maximum packing fraction, dn, vs. particle interaction coefficient for Eiler's 
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tain the best fit of the suspension viscosity data of 
Vand2’ and Eiler’ summarized in Tables I1 and 111. 
These observed and calculated results are illustrated 
in Figure 3. A minimum absolute error was obtained 
for each of these sets of data at a very distinct value 
for the particle interaction coefficient, u, as shown 
in Figures 4 and 5. The packing fractions, pn, re- 
quired to give the minimum absolute error at  each 
particle interaction coefficient, u, are shown in Fig- 
ures 6 and 7. 

These data illustrate several points. First, for each 
set of suspension viscosity data, there appears to be 
only one preferred particle interaction coefficient 
that gives the best fit of the data. The significance 
of this result should be related to the particle inter- 
action within the suspension. Since the best fit for 
Vand‘s stirred suspension viscosity results was ob- 
tained with a particle interaction coefficient of 1.7, 
it is also apparent that it is not necessary for the 
particle interaction coefficient, u, to be a whole 
number. However, the best fit of Eiler’s data did 
occur for a whole number at u = 1.0. 

The trend of the data in Figures 6 and 7 is also 
interesting in that the packing fraction, pn, at the 
minimum average absolute error for each data set 
appears to increase as the value of the particle in- 
teraction coefficient, u, increases. This observation 
can be used to save some time in finding optimum 
values for u and pn. 

Note that the minimum error for Vand‘s unstirred 
data occurred at  a particle interaction coefficient 
greater than u = 3.0 and at  a packing fraction, pn, 
greater than 1.0. This would suggest that the pa- 
rameters obtained for the unstirred data do not nec- 
essarily have reasonable physical significance. 
However, for Vand’s stirred data, the packing frac- 
tion of (on = 0.602 at a particle interaction coefficient 
of u = 1.7 does seem reasonable. This is especially 
true since the minimum average absolute error for 
this stirred data was less than half the value for the 
unstirred data. 

CONCLUSIONS 

Several suspension equations available in the lit- 
erature have been found to have a common deriv- 
ative form. This common derivative was found to 
be equivalent to a ratio of the intrinsic viscosity, 
[ q ] ,  and a quantity, V I ~ ~ ,  defined as the “relative 
suspension interaction volume” available for particle 
flow. VInt was, in general, found to be a relatively 
simple function of the suspension particle volume 

fraction, p, the maximum particle packing fraction, 
pn, and a new variable, u, defined as the particle 
interaction coefficient. Different forms of this com- 
mon derivative were obtained by modifying VI, with 
a simple adjustment for the value for the interaction 
coefficient, u. Integration of this generalized deriv- 
ative yielded a generalized suspension viscosity 
equation that was found to predict the form of many 
suspension equations that have previously appeared 
in the literature. For example, by varying the inter- 
action coefficient, u, the Arrhenius equation resulted 
when u = 0, the Kreiger-Dougherty equation re- 
sulted when u = 1, and when u = 2, the Mooney 
equation resulted. Fractional values for the particle 
interaction coefficient were also found to be useful 
when optimizing the empirical fit of the literature 
data of Vand and Eiler. Additional insight from such 
a data fit was also obtained from the magnitude of 
both the particle interaction coefficient, u, and the 
packing fraction, pn. 
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